Lysosomal Function Is Involved in 17β-Estradiol-Induced Estrogen Receptor α Degradation and Cell Proliferation
نویسندگان
چکیده
The homeostatic control of the cellular proteome steady-state is dependent either on the 26S proteasome activity or on the lysosome function. The sex hormone 17β-estradiol (E2) controls a plethora of biological functions by binding to the estrogen receptor α (ERα), which is both a nuclear ligand-activated transcription factor and also an extrinsic plasma membrane receptor. Regulation of E2-induced physiological functions (e.g., cell proliferation) requires the synergistic activation of both transcription of estrogen responsive element (ERE)-containing genes and rapid extra-nuclear phosphorylation of many different signalling kinases (e.g., ERK/MAPK; PI3K/AKT). Although E2 controls ERα intracellular content and activity via the 26S proteasome-mediated degradation, biochemical and microscopy-based evidence suggests a possible cross-talk among lysosomes and ERα activities. Here, we studied the putative localization of endogenous ERα to lysosomes and the role played by lysosomal function in ERα signalling. By using confocal microscopy and biochemical assays, we report that ERα localizes to lysosomes and to endosomes in an E2-dependent manner. Moreover, the inhibition of lysosomal function obtained by chloroquine demonstrates that, in addition to 26S proteasome-mediated receptor elimination, lysosome-based degradation also contributes to the E2-dependent ERα breakdown. Remarkably, the lysosome function is further involved in those ERα activities required for E2-dependent cell proliferation while it is dispensable for ERα-mediated ERE-containing gene transcription. Our discoveries reveal a novel lysosome-dependent degradation pathway for ERα and show a novel biological mechanism by which E2 regulates ERα cellular content and, as a consequence, cellular functions.
منابع مشابه
The antinociceptive effect of 17β-estradiol in the paragigantocellularis lateralis of male rats is mediated by estrogenic receptors
Introduction: 17β-Estradiol is a neuroactive steroid and its pain modulatory role has been well studied previously. 17β-Estradiol modulates nociception by binding to its receptors and also by allosteric interaction with other membrane - bound receptors such as glutamate and GABAA receptors. Paragigantocellularis lateralis (LPGi) is also involved in pain modulation and perception, in addition...
متن کاملDynamin II is required for 17β-estradiol signaling and autophagy-based ERα degradation
17β-estradiol (E2) regulates diverse physiological effects, including cell proliferation, by binding to estrogen receptor α (ERα). ERα is both a transcription factor that drives E2-sensitive gene expression and an extra-nuclear localized receptor that triggers the activation of diverse kinase cascades. While E2 triggers cell proliferation, it also induces ERα degradation in a typical hormone-de...
متن کاملEffects of 17β-Estradiol and Estrogen Receptor Antagonists on the Proliferation of Gastric Cancer Cell Lines
PURPOSE THE AIMS OF THIS STUDY WERE AS FOLLOW: 1) to de scribe the expression status of estrogen receptor-α and -β mRNAs in five gastric carcinoma cell lines; 2) to evaluate in vitro the effects of 17β-estradiol and estrogen receptor antagonists on the proliferation of the cell lines. MATERIALS AND METHODS Detection of estrogen receptor-α and estrogen receptor-β mRNA in five human gastric can...
متن کاملAssessing the effect of intra-paragigantocellularis lateralis injection of 17β- estradiol on the acute and persistent pain in the male rat
Introduction: 17β-estradiol modulates nociception by binding to estrogenic receptors and also by allosteric interaction with other membrane-bound receptors like glutamate and GABAA receptors. Beside its autonomic functions, paragigantocellularis lateralis (LPGi) nucleus is also involved in pain modulation. The aim of the current study was to investigate the role of the intracellular estrogen...
متن کاملEstrogen treatment enhances neurogenic differentiation of human adipose derived stem cells in vitro
Objective(s):Estrogen is a sexual hormone that has prominent effects on reproductive and non-reproductive tissues. The aim of this study is to evaluate the effects of estrogen on the proliferation and neural differentiation of human adipose derived stem cells (ADSCs) during neurogenic differentiation. Materials and Methods: Isolated human ADSCs were trans-differentiated in neural induction med...
متن کامل